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What are Good (Pre-training) Representations
for Robotic Manipulation?

With a few autonomous driving work first ...
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Autonomous Driving Panorama 2024
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Any pizza left?

o
Autonomous
w# Driving
% Research
Academia Industry

Q: We have lots of GPUs,
millions of driving data.
Could we leave Tesla no
pizza, and achieve L4 once
for all using e2e?

Q: I don’t have too much
resource. Is there any
impact research left for
autonomous driving
research at University?

Perception /
Predlctlon

A: Definitely not.
Academia/industry should
collaborate in whatsoever close
manners.

A: My guess is Maybe.
Open-set Perception / Motion
Prediction / etc.



End-to-end Autonomy | True Incentive
I

+ Global optimization: when perception fails/inferior, planning still could work.

(a) Classical Approach Bounding box Trajectory

(b) End-to-end Paradigm (This Survey)
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Chen et al., End-to-end Autonomous Driving:

Challenges and Frontiers, https://arxiv.org/abs/2306.16927 | x
+ Scaling law: massive amount of data + 01
infra/compute —> strong generalization |
—— 0.0001x (0.65M)
—— 0.001x (6.6M)
—— 0.01x (66M)
Hu et al. GAIA-1: A Generative World 04 — 0.1x (650M)
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https://arxiv.org/abs/2309.17080
https://arxiv.org/abs/2309.17080
https://arxiv.org/abs/2309.17080
https://arxiv.org/abs/2306.16927

Classic algorithm: UniAD
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LIS TSN X1 First time to unify
e Interactions modeled by attention e - full-stack AD tasks!

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.



UniAD - Recover from Upstream Errors
I

Planner could still attend to ‘undetected’ regions/objects

Objects in Undetected Still Attended
i by TrackFormer by Planner
I :'
A v

KEEP FORWARD
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Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.



Core in UniAD: Planning-oriented, not a MTL framework.

Tasks benefit # each other and contribute to safe planning

D Modules Tracking Mapping Motion Forecasting Occupancy Prediction Planning
Track Map Motion Occ. Plan | AMOTAT AMOTP| IDS| | IoU-laneT IoU-roadf minADE] minFDE| MR| | IoU-n.t IoU-f.1 VPQ-n.t VPQ-f.1 | avg.L2| avg.Col.}

0| v v v v v/ | 0356 1.328 893 | 0.302 0675 | 0858 1.270 0.186 | 559 34.6 478 264 | 1.154 0.941
1 v 0.348 12333 791 - - - - - - - - - - -

2 v - - - 0.305 0.674 - - - - - - - - -

3 v v 0.355 1.336 785 0.301 0.671 - - - - - - - - -

4 v - - - - - 0.815 1.224 0.182 - - - - - -

5 v v 0.360 1.350 919 - - 0.751 1.109 0.162 - - - - - -

6 v v v 0.354 1:339 820 0.303 0.672 0.736(-9.7%)) 1.066(-12.9%) 0.158 - - - - - -

7 v - - - - - - - - 60.5 37.0 524 29.8 - -

8 v v 0.360 1.322 809 - - - - 62.1 38.4 522 32.1 - -

9 v v v v 0.359 1.359 1057 0.304 0.675 I0.710(-3.5%)I 1.005(-5.8%)  0.146 62.3 39.4 53.1 8522 - -
10 v - - - - - - - - - - - 1.131 0.773
11 v v v v 0.366 1.337 889 0.303 0.672 0.741 1.077 0.157 - - - - 1.014 0.717
12 v v v v v 0.358 1.334 641 0.302 0.672 0.728 1.054 0.154 62.3 39.5 52.8 32.3 1.004 0.430

Task Synergy Effect:

ID. 4-6: Track & Map — Motion+’

ID. 7-9: Motion%’ < Occupancy+’

ID. 10-12: Motion & Occupancy — Planning %’

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.



. o Li et al. BEVFormer: Learning Bird's-Eye-View
|V at | o n Representation from Multi-Camera Images via
Spatiotemporal Transformers. ECCV 2022

In a nutshell...

A unified End-to-End framework which
fuses multi-camera and temporal
feature based on Deformable
Attention and is suitable for various
kinds of perception tasks in AD

Lookup & Aggregate
What's in here at timestamp t ? There is a car |

T

—

Multi-Camera Images at Timest&mp t
!
Ego —1
N\
\
/
BEV Queries | Temporal Attention | BEV at Timestamp ¢
10

BEV at Timestamp ¢ — 1



In a nutshell... Key Recipe...

A unified End-to-End framework which e BEV Queries Q:lookup to obtain
fuses multi-camera and temporal BEV feature map

feature based on Deformable

Attention and is suitable for various

kinds of perception tasks in AD

Lookup & Aggregate
What's in here at timestamp t ? There is a car |

~
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BEV Queries Temporal Attention BEV at Timestamp ¢
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BEV at Timestamp ¢ — 1



tivation

In a nutshell...

A unified End-to-End framework which .
fuses multi-camera and temporal

feature based on Deformable .
Attention and is suitable for various

kinds of perception tasks in AD

Lookup & Aggregate

Key Recipe...

BEV Queries Q: lookup to obtain
BEV feature map

Spatial Cross-Attention: fuse
multi-camera feature

What's in here at timestamp t ?

There is a car |

T

BEV Queries Temporal Attention

BEV at Timestamp ¢ — 1

BEV at Timestamp ¢
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In a nutshell...

tivation

Key Recipe...

A unified End-to-End framework which e BEV Queries Q:lookup to obtain

fuses multi-camera and temporal

BEV feature map

feature based on Deformable  Spatial Cross-Attention:fuse

Attention and is suitable for various

multi-camera feature

kinds of perception tasks in AD « Temporal Self-Attention: aggregate

What's in here at timestamp t ?

temporal BEV feature

Lookup & Aggregate

There is a car |

= LTy

Spatial Attention [

T

BEV Queries

Temporal Attention BEV at Timestamp t

BEV at Timestamp ¢ — 1
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otivation

In a nutshell... Key Recipe... Comment

A unified End-to-End framework which e BEV Queries Q:lookup to obtain - Using learnable queries

fuses multi-camera and temporal BEV feature map to represent real world

feature based on Deformable » Spatial Cross-Attention: fuse ‘ BEV vi

Attention and is suitable for various multi-camera feature rom view

kinds of perception tasks in AD « Temporal Self-Attention: aggregate  * Look up spatial features
temporal BEV feature in images and temporal

Lookup & Aggregate features in previous BEV
What's in here at timestamp t ? There is acar I map, aka
' Spatial-temporal

T

N\
\
J

BEV Queries Temporal Attention BEV at Timestamp ¢

14

BEV at Timestamp ¢ — 1
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BEVFormer: Demo

BEVFormer: Learning Bird's-Eye-View Representation from
Multi-Camera Images via Spatiotemporal Transformers

Zhiqi Li*x, Wenhai Wang=*, Hongyang Li*, Enze Xie, Chonghao Sima, Tong Lu, Yu Qiao, Jifeng Dai
Nanjing University Shanghai Al Laboratory The University of Hong Kong
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Introduction to Robotic Manipulation



Introduction | Visuomotor control

image input

action output

il

Visual Policy
Encoder Head SS

gripper state + end-of-effector pose

OpenﬂriveLab



Introduction | Representation Learning for Robotic Manipulation

Pre-trained representations (e.g. CLIP feature) enable efficient robot learning.

{
1
imaqe : Pre-trained Policy [ achion
g [ Visual Encoder Head !
|
\

Rutav Shah, Vikash Kumar. RRL: Resnet as representation for Reinforcement Learning. In ICML, 2021.
Apoorv Khandelwal, et al. Simple but Effective: CLIP Embeddings for Embodied Al. In CVPR, 2022.

However, in-domain robot datais
scarce.

Enwronment

K

Human Data

To address this limitation:
leverage large-scale human video

datasets (e.g. Ego4D) oot
to extract generalizable features.  —---- p----

Open.ﬂriveLab




Research Roadmap

¢ +64%
D Stanford & Stanford 7 ) tovora >
University qP University RESEARCH INSTITUTE ws l
CoRL 2022 RSS 2023 Best Paper Finalist RSS 2024 | Reakrobot
R3M” Voltron® MPI (Ours) T —
% ROBOTICS )2s i
2022/03 ‘@@ CoRL " 2022/09 {@ 2023/12 e I
: : by
l ) CoRL 2022/03 . DIcLR 2023/02 . MicLr 2024/02 Time zon
: .
MVP " VIP" GR-1" | H
! R.E.Grounding
CoRL 2022 Oral ICLR 2023 Spotlight ICLR 2024 ! -
) Berkeley OQ & Penn il ByteDance gl
> UNIVERSITY 0f PENNSYLVANIA MPI (Ours

MPI exhibits stronger generalization capability c.f. R3M, MVP and Voltron. Open/fariveLab
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How to learn a good visual representation in pre-training?

MPI: Manipulation by Prediction Interaction



Motivation

(a) Contrastive | . i
Learningi | <—> !

(
(b) Masked

‘;Oi Signal
Modeling

Language | “Remove top of | (c) Video
Description!  the blender” i Prediction

Where-to-Interact

Lack of

Explicit Interaction Modeling
Prior e (a) R3M: utilize contrastive learning, focus
Work =

e (b) MVP: apply MAE, focus on

e (c) GR-1:sequential video prediction, but
introduce or
X effectively capture the dynamic
interactions

Ours Reflect upon the pre-training objectives

e Instill interactive dynamics by proposing an

interaction-oriented prediction paradigm

Interactive dynamics: the patterns of behavior and physical
interactions that occur between a robot and the environment

OpenﬂriveLab




MPI | Pipeline and Framework

I
Pre-training dataset Two Training Objectives
Ego4d hand-and-object subset Keyframes “how tointeract” “where to interact”
( Initial State ) Encoder Decoder
~ prediction queries
Dalze| @ - i
, . N == g MLP
Final State = ViT |= 3 % ~EQE Q kv /\—>[ BidiectionAtn |
" % ’ 8 z EQ: K,V ,o_ Q K,V ~> Text Cnlass-Ann
. A ‘ = —>| Visual Clross-Attn
)~ Q| & =) K,V
LY & @] We
bn i o o
Language Description Q- i? = C]
bbb bbb bbbl \ KVl £ 0 %
i “Remove top of the blender” | = 2 [ MLP ‘
N o e e e e e o2 1 |
— D K,V D —>I Bi-direction Attn I
|
LA_ Q

detection queries

Zeng et al, Learning Manipulation by Predicting Interaction, RSS 2024



. Evaluation Suite
MPI | Experiments U | .
e Evaluations on visuomotor control: both in real world and in

I simulation(Franka Kitchen, MetaWorld) Lo

Performance Comparison e Referring Expression Grounding ¢«

[]R3m @ stnford Real-robot Experiment Setting

9 University
et CoRL 2022
B e . .
T CoRL 2022 oral 2 5 complex kitchen environment 10 clean background
~ORL 2 ora

S Stanford @
University  TOYOTA
RSS 2023 best paper finalist

] MPI (Ours)

Real-robot

Generalization Validation

Robustness to Visual
Distractions

Put the orange into backset Pick up bread Close laptop Scan code Push block

b d ‘.i M

Stack block Water roses Put croissant on the plate Pick up ice cream Put pepper on the plat

| -

(a) Originolgetting (c) Obj. Variation

OpenﬂriveLab




MPI - Testament on Real Robots

Demo in kitchen environment

Object Background
Variation Distraction
White plastic pot Daisies — Roses

— Wooden pot

Open.@ riveLab




MPI - Experiments

Visuomotor Control in Simulation Referring Expression Grounding

\

Referring Expression Grounding
Turn the stove top kno!

\_gg
N

The Stapler in front and
on the top-left of the
food bag.

Method ‘ Embedding Average Precision (AP)

@025 @05 @07 The experimental results reveal
R3M [36] R2048 8527 7179 42.66 .
MVP [40] | R 9307 8532 6037 that MPl yields state-of-the-art
Voltron [24] R196%384 92.93 84.70 57.61

- MPI (Ours)*
Openith€ left door MPI (Ours)

o ‘ %@ G210 718 performance on a broad
_ . “ spectrum of downstream tasks.

TABLE II: Results of single-task visuomotor control on Franka Kitchen. We report the success rate (%) over 50 randomly
sampled trajectories. We bold the best result for models with similar parameters and underline the second. “INSUP.” represents
classification-based supervised learning on ImageNet. MPI consistently exhibits superior performance across multiple tasks. TABLE III: Results of single-task vi tor control on Meta-World simulation environment. We report the success
rate (%) over 50 randomly sampled trajectories. The best results are bolded and the second highest are underlined. MPI

Method | Backbone  Param. | Turn knob  Open door  Flip switch  Open microwave Slide door | Average showcases exemplary performance across three tasks, exhibiting a superior average success rate in comparison to prior methods.
INSUP. [21] | ResNet50 25.6M 28.0 18.0 50.0 26.7 75.7 39.7 -

CLIP [39] ResNet50  25.6M 26.3 13.0 417 24.7 86.3 384 Method | Backbone Param. | Assemble Pick & Place Press Button Open Drawer ~Hammer | Average

R3M [36] ResNet50  25.6M 53.3 50.7 86.3 59.3 97.7 69.5 R3M [36] ResNet50  25.6M 94.0 60.3 66.3 100 93.7 82.9

Voltron [24] | ViT-Small 22M 217 45.3 95.3 40.3 99.7 705 MVP [40] ViT-Base 86M 82.7 82.0 62.7 100 95.7 84.6

MPI (Ours) | ViT-Small ~ 22M 833 503 89.0 59.7 1000 | (765) Voltron [24] | ViT-Small ~ 22M 723 57.3 307 100 83.0 68.7

MVP [40] ViT-Base 86M 79.0 48.0 90.7 41.0 100.0 717 MPI (Ours) | ViT-Small 2M | 690 64.0 98.7 100 96.0 ]( 85.7)
Voltron [24] | ViT-Base 86M 76.0 453 91.0 41.0 99.3 7

MPI (Ours) | ViT-Base  86M 89.0 577 93.7 54.0 100.0 78.9

OpenﬂriveLab




MPI | Takeaways

e By instructing the model towards predicting transition frames and
detecting manipulated objects, the model can foster better
comprehension of “how-to-interact” and “where-to-interact”.

e Interaction-level feature yields enhanced generalizability.

e Thetasks of predicting transition frame and detecting manipulated
objects can promote each other.

Project page Code on Github

OpenﬂriveLab
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How to “calibrate” intermediate state towards better policy actions?

CLOVER: Closed-Loop Visuomotor Control with
Generative Expectation for Robotic Manipulation



Motivation
I

From classic control to visuomotor policy

( (a) Classic Closed-loop Control )
VA
Desired MeosEngrment Current
Val Bi Action
Human Reference ¢ p—
L Input () Feedback Loop )
- (b) Closed-loop Visuomotor Control —
! - Adaptive
_ Transition & Replan
Desired ~—
Sub-goal k v \ Action
Sub-goals £
| > —
2
Feedback-Driven
Planner Policy
4 TV () Feedback Loop
\. ' J

CLOVER: Adaptive Subgoal Transition + Re-planning + Completion Assessment



Key observation

Generated Sub-goals

Diffusion -
MOde’ ~ Sub-goal 1 Sub-goal 2 Sub-goal 3~ Sub-goal 4 Sub-goal 5~ Sub-goal 6 Sub-goal 7 Sub-goal 8

Guide Align o
Actual Roll-out 09

0.8

0.7
0.6
0.5

0.4

State Embeddings:
Effectively measures
current-to-goal errors.

0.3

0.2

Distance to goals

0.1

0.0

<

0 5 10 15 20 25 30 35 40

Roll-out sfeps

Bu, et al, Closed-Loop Visuomotor Control with Generative Expectation
for Robotic Manipulation, in submission



Experiments
I

Real-world Robots: Consecutive Tasks

Sub-task 1: lift up the pot lid Sub-task 2: put the fish into the pot Sub-task 3: put the lid on the pot

Method } ’Il‘ask completec; in a row (%) ;‘ ‘ o
ACT [53] 46.7 13.3 0.0 0.6
R3M [54] 53.3 20.0 0.0 0.7
0 RT-1 [49] 66.7 40.0 0.0 1.1
+
30% @ CLOVER (Ours) | 933 86.7 267 | 21




Experiments

Simulation: CALVIN Benchmark

- +8% v.s. 3D Diffuser Actor (previous SOTA) with more inputs
«+30% v.s. Previous “Planner + Executor” Method

Train Task completed in a row (%) 1
Method Type episodes 1 2 3 4 5 Avg. Len. 1
MCIL [47] All 304 13 0.2 0.0 0.0 0.31
HULC [48] ) o All 418 165 5.7 1.9 1.1 0.67
RT-1 [49] L;negl;ag.z:r"gfng’n“ed Lang | 533 222 94 38 13 0.90
RoboFlamingo [50] i ng Lang | 824 619 466 33.1 235 2.48
GR-1 [51] Lang 854 712 59.6 49.7 40.1 3.06
3D Diffuser Actor [52] |  Diffusion Policy | Lang | 922 787 639 51.2 412 | 3.27
UniPi* [14] All 560 16.0 8.0 8.0 4.0 0.92
SuSIE [15] Planner + Executor All 87.0 69.0 49.0 38.0 26.0 2.69
CLOVER (Ours) Lang 96.0 835 708 575 454 3.53
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What’s Next for Robotic Manipulation

Data Collection Engine / Pre-training

Programming Pre-train a “brain” model for

Application / Task

Fixed Manipulation

robotic “upper body” tasks.

)

Robot Data | - - _ _ _ ‘l _____

Pre-trained Vision-

Language Model 5
D= generali

“brain” model -zation

Visuomotor
Control Model

cook shrimp | push chairs
4

wipe wine

General-purpose, interpretable embodied foundation
model with causal reasoning capabilities

call elevator

OpenﬂriveLab



Humanoid Robots for Manufacturing

Openﬂ riveLab


https://docs.google.com/file/d/1is6vNBrcPsFV5nZOX89nQ_Y9rb2-vrCK/preview

Kudos to Our Fantastic Members / Collaborators Open;@ riveLab
I Also the slide credit

 Team Meetup

- @ Mt. Everest
Tibet, China -

: : ‘ : 2023
Meet our team in o, W ) 1\ P

Delft @RSS 2024!!

&
<
JiaZeng Qingwen Bu Li Chen Chonghao Sima Huijie Wang Zetong Yang Yunsong Zhou
MPI CLOVER UniAD DrivelLM OpenLane ViDAR ELM
T | ;.w;‘%“;n«! . e
And many
others ...

.« ,»I

Yihang Qiu Tianvii | i Shenyuan Gao Jiazhi Yang



