Open **A**riveLab



Not yet...

## Could Foundation Models really resolve End-to-end Autonomy?

### Hongyang Li

Research Scientist, **Shanghai Al Lab** / Assistant Professor, **University of Hong Kong** 

June 18, 2024

Slides credit: Jiazhi, Zetong, Li, Huijie, Shenyuan, etc.

# Outline

#### • Introduction to End-to-end Autonomous Driving (E2E AD)

- Setup / Definition
- Datasets and Evaluation
- Motivation
- Classical Approaches Walkthrough

#### Research Panorama

- Past / Present / Future
- Concurrent Work and Future
  - GenAD (CVPR 2024 Highlight)
    - Vista (in arXiv)

#### Challenges and Closing Remarks

• Data / Methodology / Compute / Goal







## Part 1:

## Introduction to End-to-end Autonomous Driving Setup / Metric / Motivation

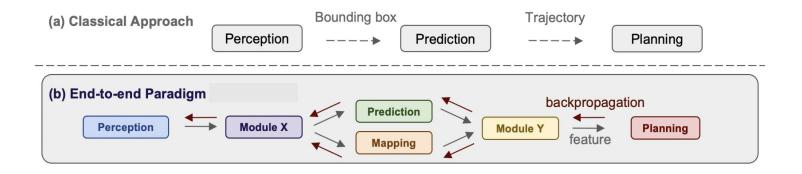
## **Preliminary | Problem Setup**



**Challenge** | Various weathers, illuminations, and scenarios



## **End-to-end | Definition**



End-to-end autonomous driving system - A suite of fully differentiable programs that:

- take raw sensor data as input
- produce a plan and/or low-level control actions as output

## **Preliminary | Datasets and Evaluation**

Note: https://github.com/autonomousvision/navsim /blob/main/docs/metrics.md

|            | Dataset        | Scale | Behavior &  | Planning Task Evaluation     |                                                                                                                                                                       |  |  |  |
|------------|----------------|-------|-------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|            |                |       | Interaction | Strategy                     | Metrics                                                                                                                                                               |  |  |  |
|            | nuScenes 📀     | 5.5 h |             |                              |                                                                                                                                                                       |  |  |  |
| Real-world | Waymo*         | 11 h  | Realistic   | Open-loop<br>( Log-replay)   | <ul><li>L2 Error</li><li>Collision Rate</li></ul>                                                                                                                     |  |  |  |
| Collected  | Argoverse2*    | 4.2 h |             |                              |                                                                                                                                                                       |  |  |  |
|            | nuPlan* nuPlar | 120 h | ML-based    | Closed-loop<br>(Interactive) | <ul> <li>Average Displacement Error (ADE)</li> <li>Final Displacement Error (FDE)</li> <li>Collision Rate</li> <li>Comfort Score</li> <li>PDM Score [Note]</li> </ul> |  |  |  |

## **Preliminary | Datasets and Evaluation**

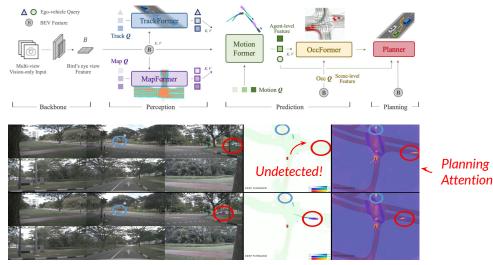
Note: https://github.com/autonomousvision/navsim /blob/main/docs/metrics.md

|            | Dataset        | Scale     | Behavior &                | Planning Task Evaluation     |                                                                                                                                                                       |  |  |
|------------|----------------|-----------|---------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            |                |           | Interaction               | Strategy                     | Metrics                                                                                                                                                               |  |  |
|            | nuScenes ·     | 5.5 h     |                           |                              |                                                                                                                                                                       |  |  |
| Real-world | Waymo*         | 11 h      | Realistic                 | Open-loop<br>( Log-replay)   | <ul><li>L2 Error</li><li>Collision Rate</li></ul>                                                                                                                     |  |  |
| Collected  | Argoverse2*    | 4.2 h     |                           |                              |                                                                                                                                                                       |  |  |
|            | nuPlan* nuPlan | 120 h     | ML-based                  | Closed-loop<br>(Interactive) | <ul> <li>Average Displacement Error (ADE)</li> <li>Final Displacement Error (FDE)</li> <li>Collision Rate</li> <li>Comfort Score</li> <li>PDM Score [Note]</li> </ul> |  |  |
| Synthetic  | DriveSim       |           | Handcrafted &<br>ML-based | Closed loop                  | - N/A                                                                                                                                                                 |  |  |
| generated  | Carla          | Unlimited |                           | Closed-loop<br>(Interactive) | <ul> <li>Driving Score =</li> <li>Route Completion * ∏ Infraction Penalty</li> </ul>                                                                                  |  |  |

\*Perception subset (with visual inputs)

## Motivation | Why end to end?

+ **Global optimization:** when perception fails/inferior, planning still could work.

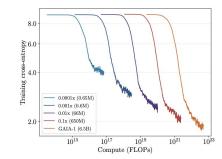


Efficiency" / faster due to one single net?

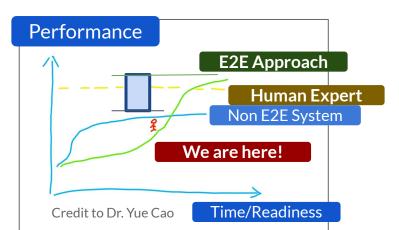
Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

#### Advantages

 Scaling law: massive amount of data + infra/compute -> strong generalization



Hu et al. GAIA-1: A Generative World Model for Autonomous Driving.



## Motivation | Why end to end?

X

- Lack of interpretability, due to the e2e neural network.
  - Unfair evaluation? E.g. open-loop L2 metrie 🛛 🗙
    - [Ref] Li et.al, Is Ego Status All You Need for Open-Loop End-to-End Autonomous Driving? CVPR 2024

Lack of data / Simulation (sim2real) / etc..

### **Classic algorithm: TransFuser (1/2) - Motivation**



### **LiDAR Point Cloud**

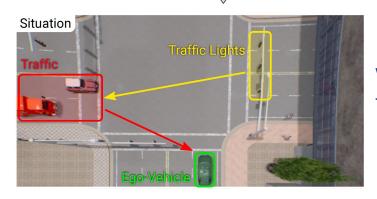
- 3D information
- Robustness for weather variations

#### **RGB** Camera

- Traffic light state
- Long-range perception

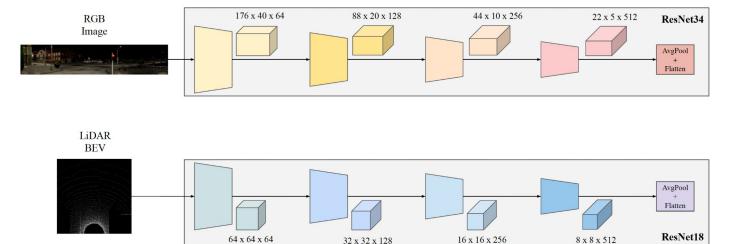


Combine the best of both worlds



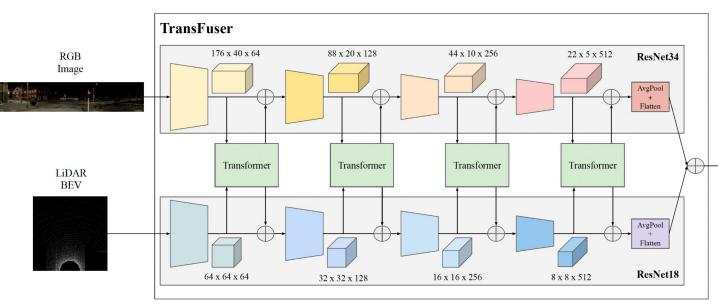
# Whole-scene understanding for safe driving

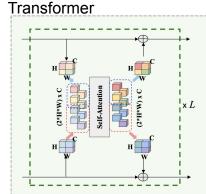
## Classic algorithm: TransFuser (2/2)



• **Dual-stream network** to extract modality-specific features

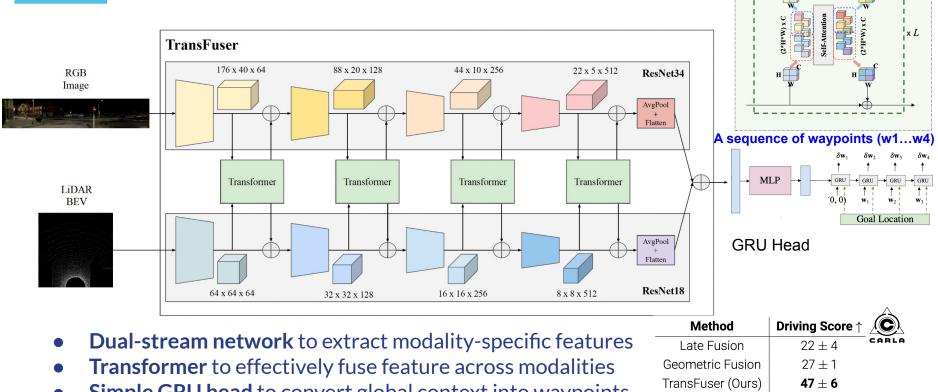
## Classic algorithm: TransFuser (2/2)





- **Dual-stream network** to extract modality-specific features
- Transformer to effectively fuse feature across modalities

## Classic algorithm: TransFuser (2/2)



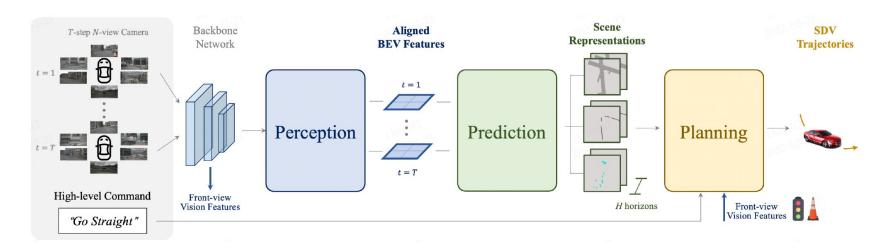
Transformer

Privileged Expert

 $77 \pm 2$ 

• Simple GRU head to convert global context into waypoints

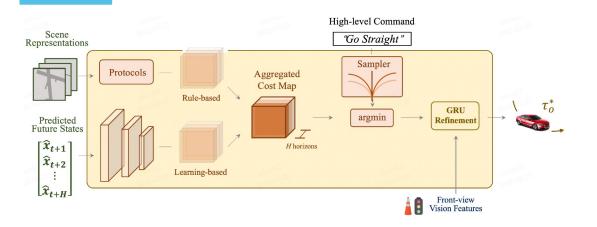
## Classic algorithm: ST-P3 (1/2)



• Incorporate perception and prediction tasks to enrich feature learning

Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV 2022.

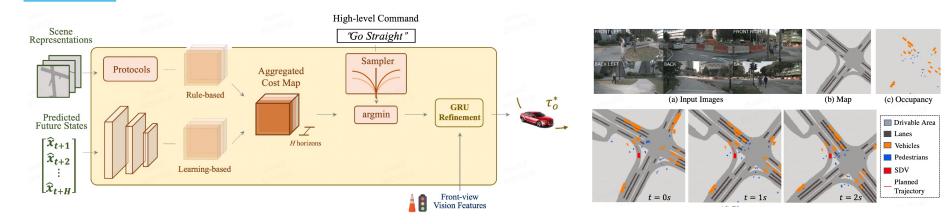
## Classic algorithm: ST-P3 (2/2)



- Incorporate perception and prediction tasks to enrich feature learning
- Plan safe routes with cost optimization

Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV 2022.

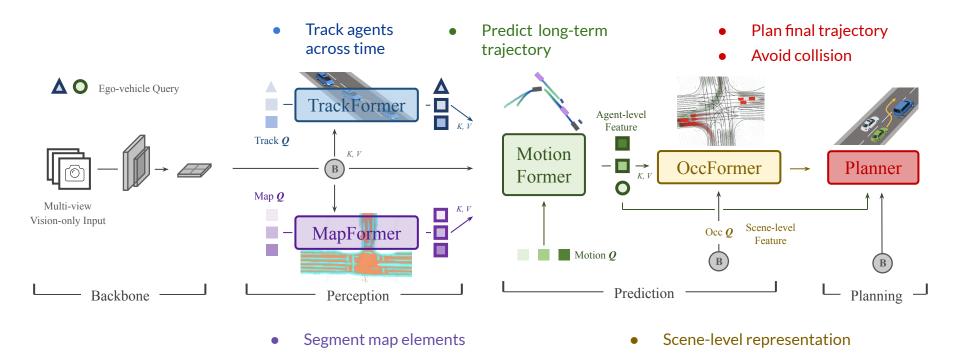
## Classic algorithm: ST-P3 (2/2)



- Incorporate perception and prediction tasks to enrich feature learning
- Plan safe routes with **cost optimization**
- End-to-end driving with interpretable scene representations

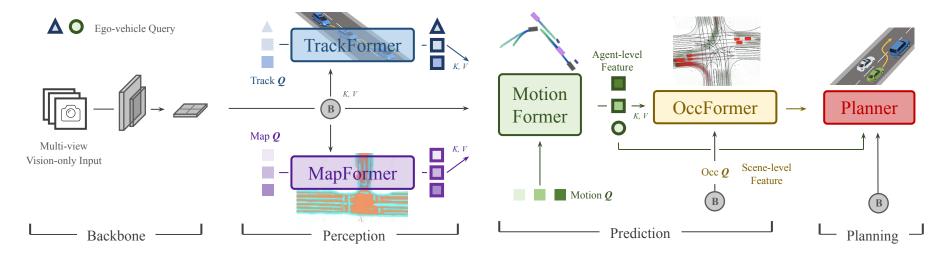
Hu et al. ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal Feature Learning. ECCV 2022.

## **Classic algorithm: UniAD**



Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

## **Classic algorithm: UniAD**



- Entire pipeline connected by queries
- Tasks coordinated with queries
- Interactions modeled by attention

Unified Query>First time to unifyTransformer-basedfull-stack AD tasks!

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

## Core in UniAD: Planning-oriented, not a MTL framework.

#### Tasks benefit deach other and contribute to safe planning

| ID |       |     | Modules |      |      |        | Tracking |            | Map       | ping           | Moti                 | on Forecasting |                     |             | Occupanc    | y Prediction   | í.            | Pla              | nning        |
|----|-------|-----|---------|------|------|--------|----------|------------|-----------|----------------|----------------------|----------------|---------------------|-------------|-------------|----------------|---------------|------------------|--------------|
| ID | Track | Map | Motion  | Occ. | Plan | AMOTA↑ | AMOTP↓   | IDS↓       | IoU-lane↑ | IoU-road↑      | minADE↓              | minFDE↓        | $MR \!\!\downarrow$ | IoU-n.↑     | IoU-f.↑     | VPQ-n.↑        | VPQ-f.†       | avg.L2↓          | avg.Col.↓    |
| 0* | 1     | ~   | 1       | 1    | 1    | 0.356  | 1.328    | 893        | 0.302     | 0.675          | 0.858                | 1.270          | 0.186               | 55.9        | 34.6        | 47.8           | 26.4          | 1.154            | 0.941        |
| 1  | 1     |     |         |      |      | 0.348  | 1.333    | 791        | -         | -              | -0                   | -              | -                   | -           | -           | -              | -             | -                | -            |
| 2  |       | 1   |         |      |      | -      |          | -          | 0.305     | 0.674          |                      | 77             | -                   | -           | -           | 05             | -             | (a <del></del> ) |              |
| 3  | 1     | 1   |         |      |      | 0.355  | 1.336    | <u>785</u> | 0.301     | 0.671          | -0                   | -              | -                   | -           | -           | -              | -             | -                | -            |
| 4  |       |     | 1       |      |      | -      | -        | -          | -         | -              | 0.815                | 1.224          | 0.182               | -           | -           | -              | -             | -                | -            |
| 5  | 1     |     | 1       |      |      | 0.360  | 1.350    | 919        | ÷         | -              | 0.751                | 1.109          | 0.162               | -           | -           |                | -             | 0.70             | 270          |
| 6  | 1     | 1   | ~       |      |      | 0.354  | 1.339    | 820        | 0.303     | 0.672          | 0.736(-9.7%)         | 1.066(-12.9%)  | 0.158               | -           |             | -              | -             | -                | -            |
| 7  |       |     |         | 1    |      | -      | -        | -          | -         | -              | -                    | -              | -                   | 60.5        | 37.0        | 52.4           | 29.8          | -                | -            |
| 8  | 1     |     |         | 1    |      | 0.360  | 1.322    | 809        | -         | -              |                      | -              | -                   | <u>62.1</u> | 38.4        | 52.2           | 32.1          | -                | -            |
| 9  | 1     | 1   | 1       | ~    |      | 0.359  | 1.359    | 1057       | 0.304     | 0.675          | <b>0.710</b> (-3.5%) | 1.005(-5.8%)   | 0.146               | 62.3        | <u>39.4</u> | 53.1           | <u>32.2</u>   | -                | -            |
| 10 |       |     |         |      | 1    |        | .=       |            | -         | 11 <del></del> |                      | -              | -                   |             |             | 1. <del></del> | . <del></del> | 1.131            | 0.773        |
| 11 | 1     | 1   | 1       |      | 1    | 0.366  | 1.337    | 889        | 0.303     | 0.672          | 0.741                | 1.077          | 0.157               | -           | 3 <b>-</b>  | 21 <b>—</b> 2  | -             | <u>1.014</u>     | <u>0.717</u> |
| 12 | 1     | 1   | ~       | 1    | 1    | 0.358  | 1.334    | 641        | 0.302     | 0.672          | 0.728                | 1.054          | 0.154               | 62.3        | 39.5        | <u>52.8</u>    | 32.3          | 1.004            | 0.430        |

#### Task Synergy Effect:

- **ID. 4-6:** Track & Map  $\rightarrow$  Motion  $\mathscr{A}$
- **ID. 7-9:** Motion  $\mathscr{A} \leftrightarrow \text{Occupancy} \mathscr{A}$
- **ID. 10-12:** Motion & Occupancy  $\rightarrow$  Planning  $\mathscr{A}$

Hu et al. Planning-oriented Autonomous Driving. CVPR 2023.

### Why mention these Classic algorithms?

Table 2. **Open-Loop Evaluation on nuScenes.** FeD achieves state-of-the-art open-loop evaluation performance on nuScenes [5] validation set compared with both none-LLM based methods and LLM-based GPT-Driver [58]. We evaluate FeD on two different measures of metrics for fair comparison<sup>1</sup>.

| Metrics | Method                      |      | L2 ( | m) ↓ |      | Collision (%) $\downarrow$ |      |      |      |  |
|---------|-----------------------------|------|------|------|------|----------------------------|------|------|------|--|
| Metrics | Method                      | 1s   | 2s   | 3s   | Avg. | 1s                         | 2s   | 3s   | Avg. |  |
|         |                             |      |      |      | 2.11 |                            |      |      |      |  |
| ST-P3   | VAD [40]                    | 0.17 | 0.34 | 0.60 | 0.37 | 0.07                       | 0.10 | 0.24 | 0.14 |  |
| SI-P3   | VAD [40]<br>GPT-Driver [58] | 0.20 | 0.40 | 0.70 | 0.44 | 0.04                       | 0.12 | 0.36 | 0.17 |  |
|         | FeD                         | 0.21 | 0.33 | 0.49 | 0.34 | 0.00                       | 0.03 | 0.15 | 0.06 |  |

|          | FeD             | 0.27 | 0.53 | 0.94 | 0.58 | 0.00 | 0.04 | 0.52 | 0.19 |
|----------|-----------------|------|------|------|------|------|------|------|------|
|          | GPT-Driver [58] | 0.27 | 0.74 | 1.52 | 0.84 | 0.07 | 0.15 | 1.10 | 0.44 |
|          | UniAD [35]      | 0.48 | 0.96 | 1.65 | 1.03 | 0.05 | 0.17 | 0.71 | 0.31 |
| UniAD    | EO [43]         | 0.67 | 1.36 | 2.78 | 1.60 | 0.04 | 0.09 | 0.88 | 0.33 |
| $\frown$ | FF [33]         | 0.55 | 1.20 | 2.54 | 1.43 | 0.06 | 0.17 | 1.07 | 0.43 |
|          | SA-NMP [94]     |      | -    | 2.05 |      | -    | -    | 1.59 | -    |
|          | NMP [94]        | -    | -    | 2.31 | -    | -    | -    | 1.92 | -    |

#### Baselines of Today's Literature in End—to-end autonomous driving

Snapshot from Zhang et al., Feedback-Guided Autonomous Driving, CVPR 2024.

## Industry Credit: Openpilot (~2016)





- Openpilot is an open source driver assistance system.
- Openpilot performs the functions of Automated Lane Centering (ALC) and Adaptive Cruise Control (ACC) for 250+ supported car makes and models.

#### A minor (yet respectful) technical report by our team: https://arxiv.org/abs/2206.08176

Li et al. Level 2 Autonomous Driving on a Single Device: Diving into the Devils of Openpilot.



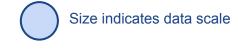


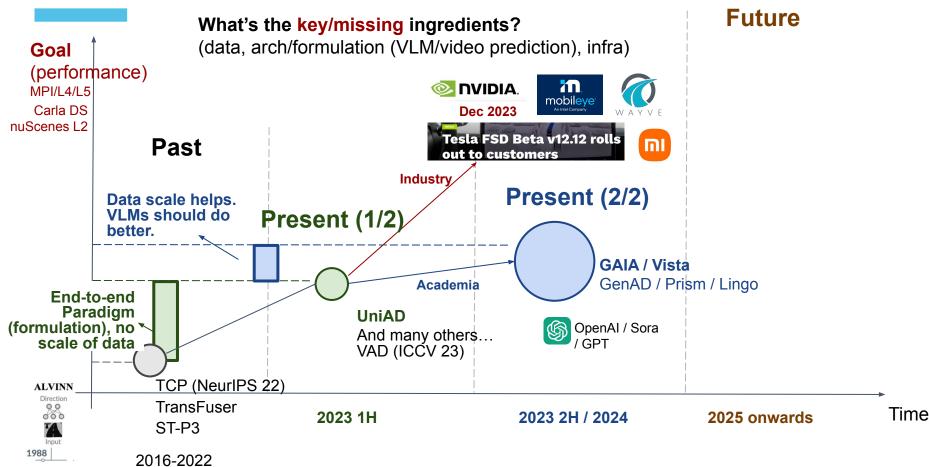
## Part 2:

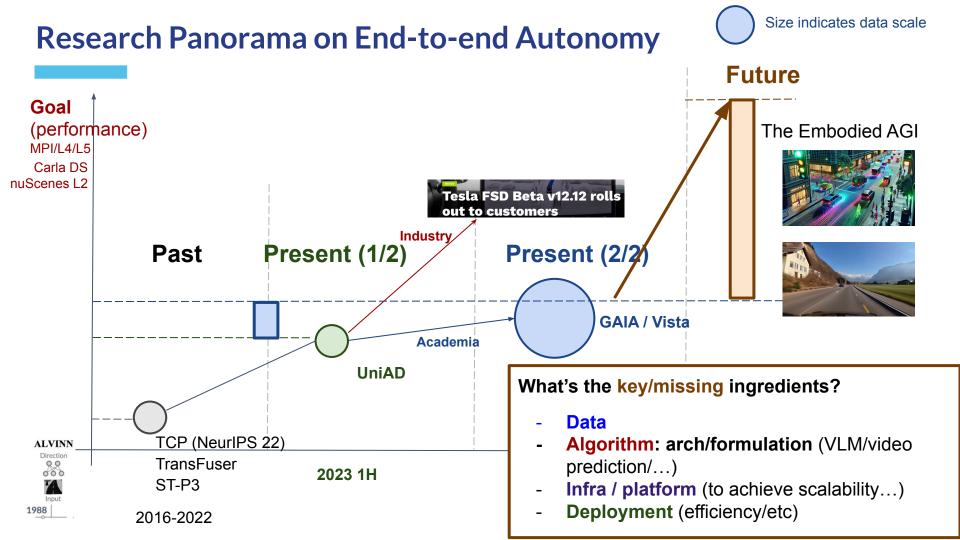
## **Research Panorama**

Past / Present / Future

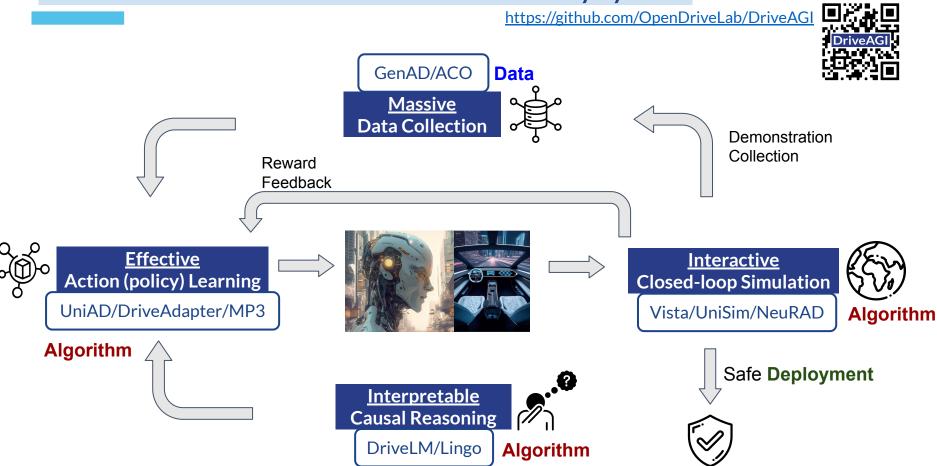
## **Research Panorama on End-to-end Autonomy**



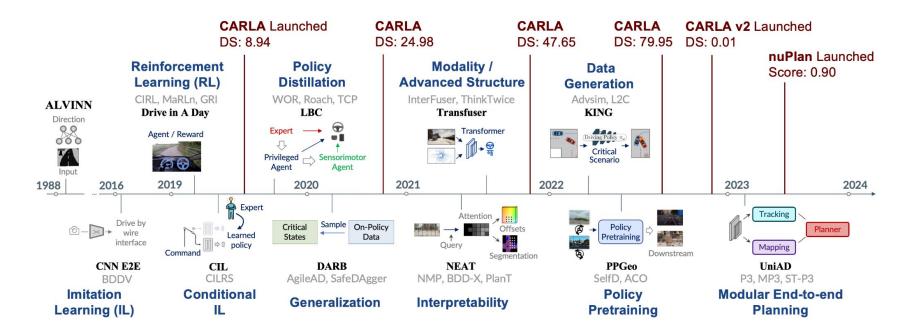




### Our Take on Generalizable End-to-end Autonomy Systems



## Taking it seriously: Roadmap | End-to-end Autonomous Driving



Chen et al. End-to-end Autonomous Driving: Challenges and Frontiers <u>https://arxiv.org/abs/2306.16927</u>





## **Concurrent Work** GenAD / Vista / GAI<u>A / etc.</u>

Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5

#### Open **A**riveLab



# How to scale up the autonomous driving models? GenAD: Generalized Predictive Model for Autonomous Driving

CVPR 2024, Highlight



arxiv.2403.09630

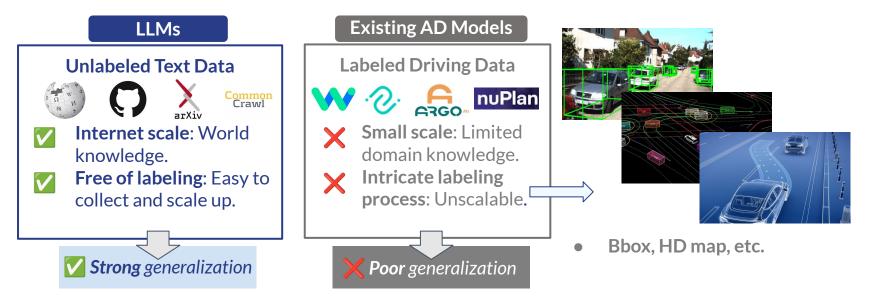
## Motivation (1/3) | What Makes for Generalized AD Model?

### **Data Distinction:**

- + LLMs pretrained on **trillions of unlabeled text tokens** exhibit strong generalization in a variety of domains and applications
- However, existing AD models are established on **limited labeled data**, which hampers their generalization

**Poster Session** 

Thu, 5: 15- 6:45 p.m Arch 4A-E #5



Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024

## Motivation (2/3) | What Makes for Generalized AD Model?

## Learning Objective:

- Supervised by 3D labels
   X Hard to scale without sufficient labeled data
- No accessible labeled data

   Model
   Model
   Model-XL

   Image: NUSCENES
   Image: Number of the second sec
- Supervised by expert features
  - Scalable with developed expert models (e.g., DINOv2)
     Focusing on specific objects (e.g., centered or large ones)
  - Ignoring critical details (e.g., small objects)



• Feature map visualization from DINOv2

**X** Undesirable for modeling challenging driving scenes

**Poster Session** 

Thu, 5: 15- 6:45 p.m Arch 4A-E #5

## Motivation (3/3) | What Makes for Generalized AD Model?

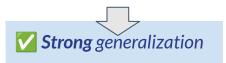
### Our Initiative: Data: Massive online driving videos Learning Objective:

• Supervised by "**pixels of future frames**" → Video Prediction





Scalable Data (easy to collect from the web) No 3D labeling needed Better detail preservation Learning world knowledge and how to drive inherently



Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5



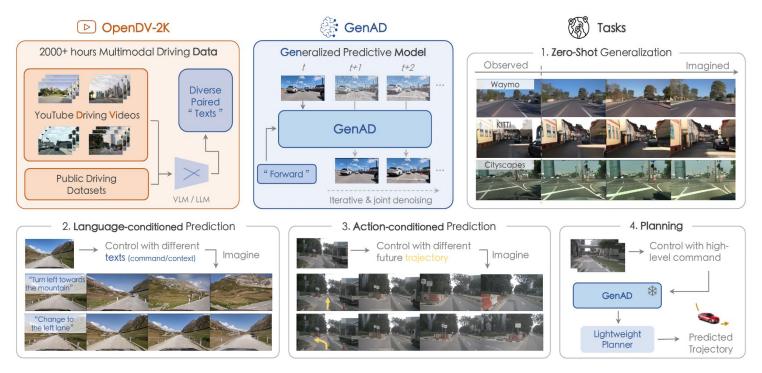


Massive YouTube videos, collected worldwide

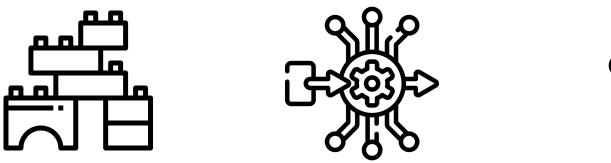
## GenAD | At a Glance

#### Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5

Summary: A **billion-scale video prediction model** trained on **web-scale driving videos**, demonstrating **strong generalization across** a wide spectrum of **domains and tasks**.









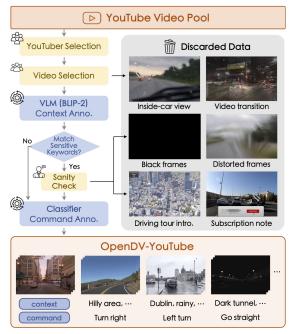
Data

Model

**Tasks** 

Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024

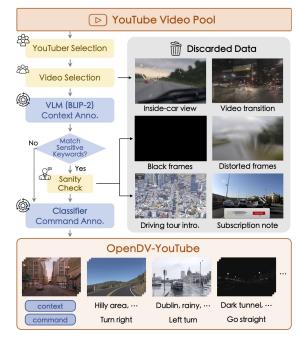
### GenAD | Dataset



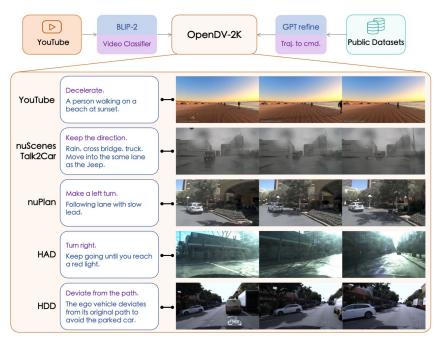
• Rigorous data collection and filtering strategy

Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5

### GenAD | Dataset



 Rigorous data collection and filtering strategy



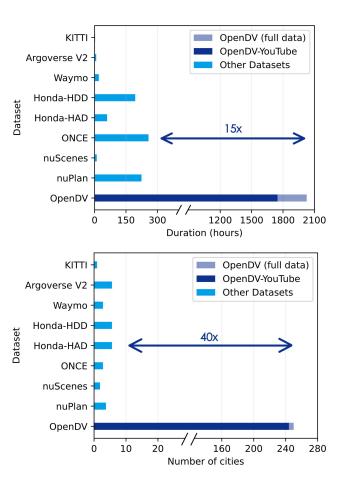
- Multi-modal and Multi-source Nature
  - Sourced from both online videos and public datasets for diversity
  - Paired with textual context and command

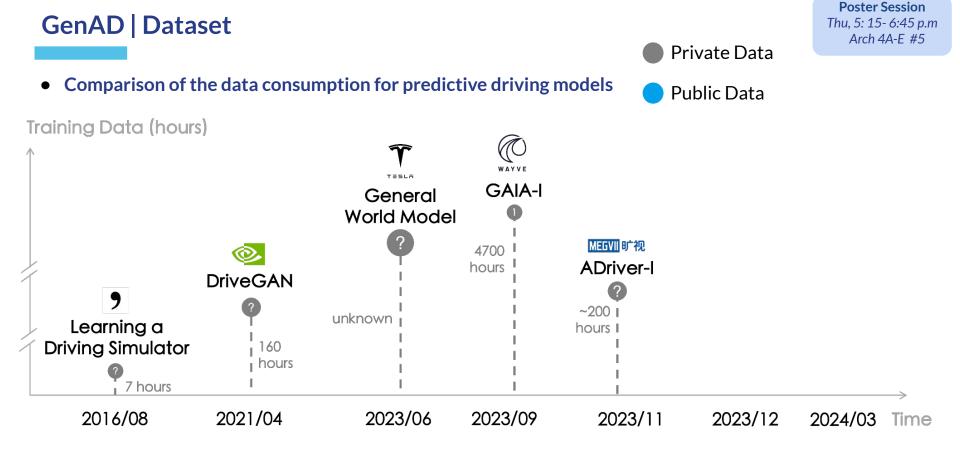
## GenAD | Dataset

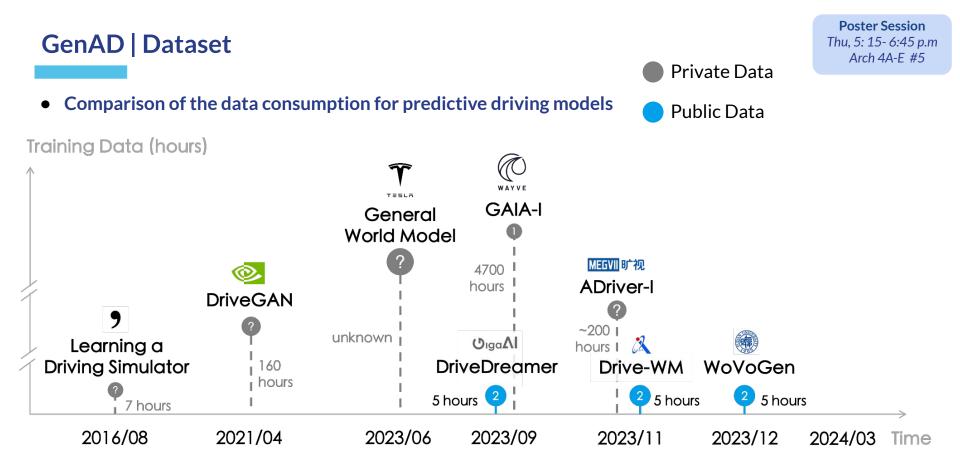
- Largest public dataset for autonomous driving
- ≥ 2059 hours, ≥ 244 cities

|                               | Dataset                                   | Duration<br>(hours) | Front-view<br>Frames  | Geographic Countries                       | Diversity<br>Cities                                | Sensor<br>Setup              |
|-------------------------------|-------------------------------------------|---------------------|-----------------------|--------------------------------------------|----------------------------------------------------|------------------------------|
| ×                             | KITTI [30]                                | 1.4                 | 15k                   | 1                                          | 1                                                  | fixed                        |
| X                             | Cityscapes [21]                           | 0.5                 | 25k                   | 3                                          | 50                                                 | fixed                        |
| X                             | Waymo Open* [97]                          | 11                  | 390k                  | 1                                          | 3                                                  | fixed                        |
| ×                             | Argoverse 2* [109]                        | 4.2                 | 300k                  | 1                                          | 6                                                  | fixed                        |
| 1                             | nuScenes [12]                             | 5.5                 | 241k                  | 2                                          | 2                                                  | fixed                        |
| 1                             | nuPlan* [13]                              | 120                 | 4.0M                  | 2                                          | 4                                                  | fixed                        |
| 1                             | Talk2Car [24]                             | 4.7                 | -                     | 2                                          | 2                                                  | fixed                        |
| 1                             | ONCE [72]                                 | 144                 | 7M                    | 1                                          | -                                                  | fixed                        |
| 1                             | Honda-HAD [51]                            | 32                  | 1.2M                  | 1                                          | -                                                  | fixed                        |
| 1                             | Honda-HDD-Action [84]                     | 104                 | 1.1M                  | 1                                          | -                                                  | fixed                        |
| 1                             | Honda-HDD-Cause [84]                      | 32                  | -                     | 1                                          | -                                                  | fixed                        |
| <ul><li>✓</li><li>-</li></ul> | OpenDV-YouTube (Ours)<br>OpenDV-2K (Ours) | 1747<br><b>2059</b> | 60.2M<br><b>65.1M</b> | $\geq 40^{\dagger}$<br>$\geq 40^{\dagger}$ | $\geq$ 244 $^{\dagger}$<br>$\geq$ 244 $^{\dagger}$ | uncalibrated<br>uncalibrated |

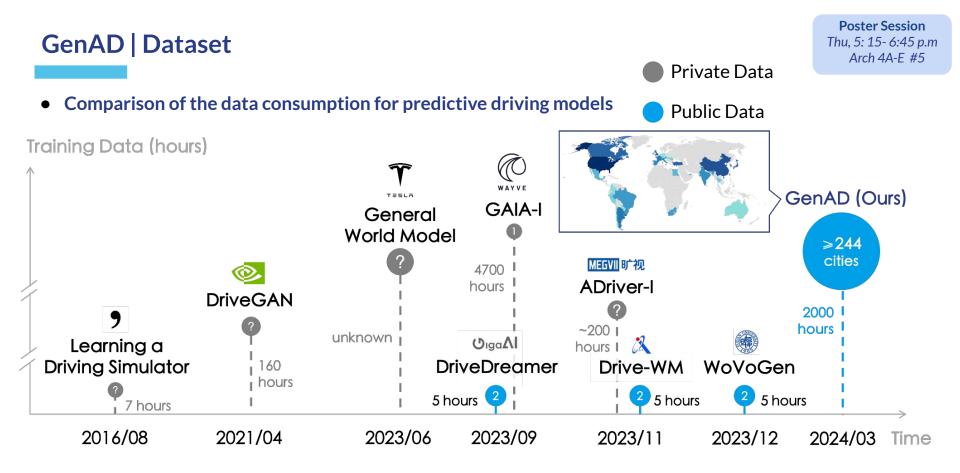
OpenDV-2K (Ours) 🚀



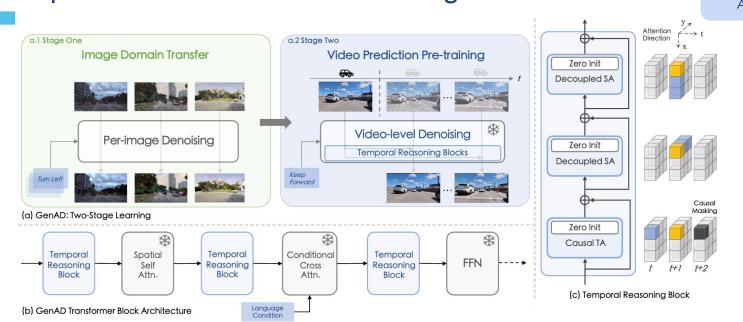




Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



Yang et al., GenAD: Generalized Predictive Model for Autonomous Driving, CVPR 2024



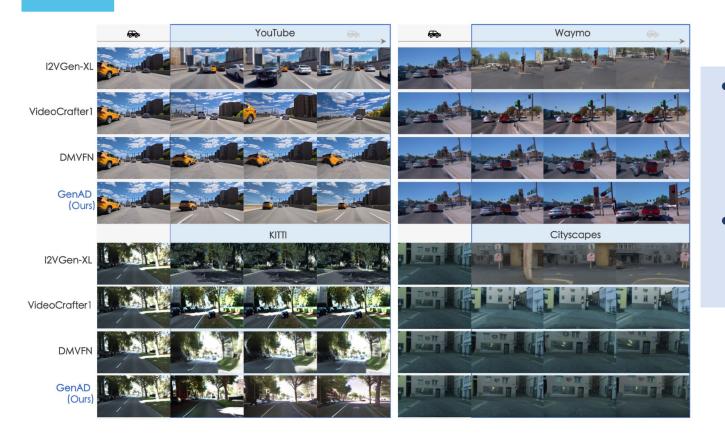
### Algorithm | Video Prediction Model for Driving

Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5

- Two-stage Training:
  - Tuning the **image generation model** (SDXL) into a highly-capable **video prediction model**
- Model Specializations for Driving:
  - Causal Temporal Attention: coherent and consistent future prediction
  - Decoupled Spatial Attention: efficient long-range modeling
  - Interleaved temporal blocks: sufficient spatiotemporal interaction

## Result on Tasks (1/4) | Zero-shot Generalization (Video Prediction)

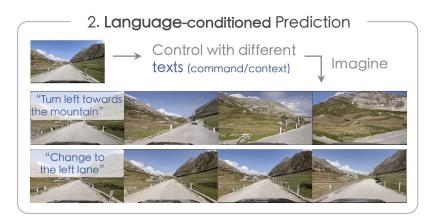
Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5



- Zero-shot video prediction on unseen datasets including Waymo, KITTI and Cityscapes
- Outperforming competitive general video generation models

### Result on Tasks (2/4) | Language-conditioned Prediction

Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5



Controlling the future evolvement with **language** 





#### "Drive slowly down at intersection, several barriers beside the road"



"Turn right, some parked cars, a parking lot"

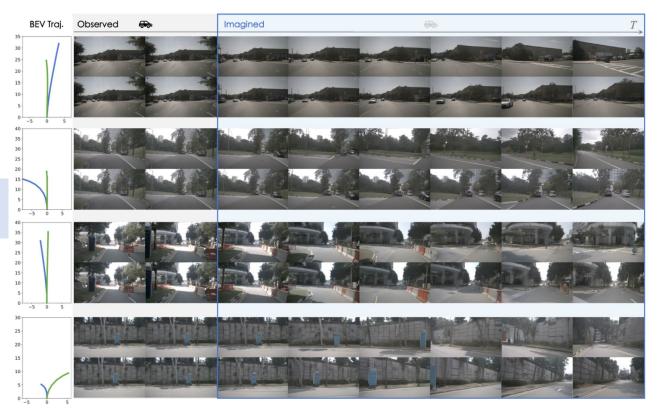
## Result on Tasks (3/4) | Action-conditioned Prediction (Simulation)

Poster Session Thu, 5: 15- 6:45 p.m Arch 4A-E #5

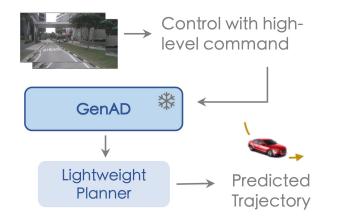
| Method       | Condition    | nuScenes<br>Action Prediction Error $(\downarrow)$ |  |
|--------------|--------------|----------------------------------------------------|--|
| Ground truth | -            | 0.9                                                |  |
| GenAD        | text         | 2.54                                               |  |
| GenAD-act    | text + traj. | 2.02                                               |  |

Table 4. **Task on Action-conditioned prediction**. Compared to GenAD with text conditions only, GenAD-act enables more precise future predictions that follow the action condition.

# Simulating the future with **user-specified trajectory**



#### Result on Tasks (4/4) | Planning



| Method                     | # Trainable<br>Params. | $\begin{array}{ l l l l l l l l l l l l l l l l l l l$ |              |  |
|----------------------------|------------------------|--------------------------------------------------------|--------------|--|
| ST-P3* [20]<br>UniAD* [22] | 10.9M<br>58.8M         | 2.11                                                   | 2.90<br>1.65 |  |
| GenAD (Ours)               | 0.8M                   | 1.23                                                   | 2.31         |  |

Table 5. Task on Planning. A lightweight MLP with *frozen* GenAD gets competitive planning results with  $73 \times$  fewer trainable parameters and front-view image alone. \*: multi-view inputs.

- Speeding up training by 3400 times (vs. UniAD)
- Demonstrating the effectiveness of the learned spatiotemporal representations

#### **Summary**

- Largest Public Driving Dataset:
  - **OpenDV-2K** provides **2059** *hours* of *worldwide* driving videos.
- Generalized Predictive Model for Autonomous Driving:
  - **GenAD** can predict plausible futures with *language* conditions and generalize to *unseen* datasets in a *zero-shot* manner.
- Broad Applications:
  - GenAD can readily adapt to *planning* and *simulation*.

Open AriveLab



# How to build a generally applicable driving world model? Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability



Open Release

arxiv.2405.17398

#### **Limitations of Existing Driving World Models**

• Generalization: limited data scale and geographical coverage

5h within Singapore & Boston nuScenes



• Representation capacity: low resolution and low frame rate



• **Control flexibility:** single modality, incompatible with planning algorithms





#### **Our Investigation: A Generalizable Driving World Model**

**Generalization:** largest driving video dataset 

5h within Singapore & Boston nuScenes



**Representation capacity:** high spatiotemporal resolution











GAIA-1 (2023/09)











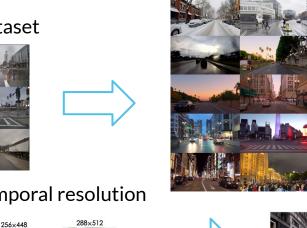




**Control flexibility:** multi-modal action inputs 

Gao et al., Vista: A Generalizable Driving World Model with High Fidelity and Versatile Controllability









576×1024

### **Capability of Vista**



#### • High-fidelity future prediction



• Continuous long-horizon rollout (15 seconds)



### **Capability of Vista**

# Open Release

stop

#### • Zero-shot action controllability

turn left

#### go straight



• Provide reward without ground truth actions



turn right











- Vista is a generalizable driving world model that can:
  - Predict high-fidelity futures in open-world scenarios.
  - Extend its predictions to continuous and long horizons.
  - Execute multi-modal actions (steering angles, speeds, commands, trajectories, goal points).
  - Provide rewards for different actions without accessing ground truth actions.



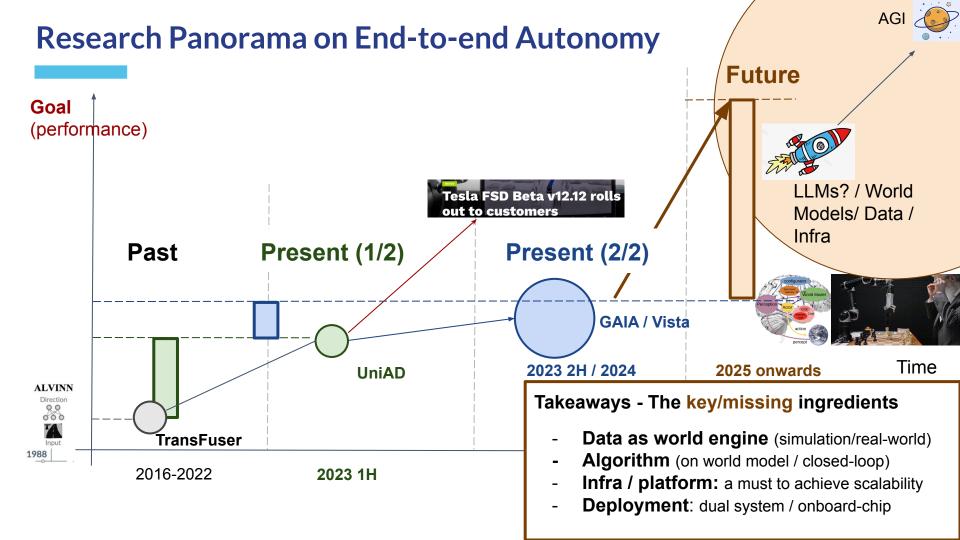


# Part 3: Challenges & Closing Remarks Data / Methodology / Compute / Goal

## **Challenges | End-to-end Autonomy**

https://arxiv.org/abs/2306.16927

|                                                    |                                                                                                               |                                                                                                                            | e from two domains)                                                                                                                |  |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|
| Dimension                                          | Research ("academia")                                                                                         |                                                                                                                            | Engineering ("industry"                                                                                                            |  |
| <b>Data</b> High quality.<br>Large-scale           | High-quality / controllable<br>Simulation                                                                     | e<br>Unlimited                                                                                                             | Scalable collection /<br>Sanity check                                                                                              |  |
|                                                    | <ul> <li>Neural rendering</li> <li>3DGS / AIGC (e.g. CVPI<br/>Siggraph 2024)</li> </ul>                       |                                                                                                                            | - Data Flywheel<br>At least 10k of hours?<br>C.f. nuScenes 4.5h                                                                    |  |
| Algorithm/Methodology<br>Efficient and<br>scalable | Closed-loop Feedback /<br>Long-horizon Planning<br>- World Model /<br>- Video generation (e.g.<br>Sora) / etc | (dichotomy?)<br>EVOLUTION, AI, AND THE<br>FINE REAR TRADECORD<br>THAT HADE OUR BEANN<br>A BRIEF HISTORY<br>OF INTELLIGENCE | <ul> <li>Efficiency / Deployment</li> <li>Dual system (Sys1/Sys2)</li> <li>Model compression / etc.</li> <li>Perception</li> </ul> |  |
| Compute/Infra                                      | ~50-200 GPUs<br>Stable Training / fast I/O                                                                    |                                                                                                                            | 500+ GPUs<br>preferably 10k? / I've no idea                                                                                        |  |



#### Kudos to Our Fantastic Members / Collaborators





Also the slide credit







Jiazhi Yang GenAD

Shenyuan Gao

Vista



Li Chen

DriveLM

**Chonghao Sima** 

Huijie Wang

**OpenLane** 

Zetong Yang Vidar

Team Meetup @ Mt. Everest Tibet, China

2023

Yunsong Zhou ELM

And many others remote...



Yihang Qiu



Tianvuli



Kashyap Chitta





Andreas Geiger

# End-of-Talk Questions?